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Exact dispersion relation E(p) for:

« Magnons of the spin chain for ABJM,
h(A) =A+bA>+. .. (A «1)

o String excitations in AdS, x CP?, (A>1)
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or possibly ¢ = 0?

Will discuss three AdS/CFT tests which tell us about c.



— Programme —

. Integrability and the AdS/CFT spectral problem
. The new example of ABJM

. One-loop energy corrections for spinning strings

. ... and for giant magnons, using algebraic curves [June 2010]
. Extension to the case ] < oo [MA/IA/DB, i.p.]
. The near-flat-space limit and its uses [MA/PS, i.p.]

. And two loops?



1 The Spectral Problem for N/ = 4 SYM
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In the strictly planar limit of AdS/CFT,

we now know the spectrum of A for all A.

Figure from review

[Beisert et. al. 2010]



Easiest case is ] = oo, where we have:
o Verylong operators O = Tr(ZZZZZZZZ .. ) + impurities
with A — J a spin-chain Hamiltonian:
A-]= Z Mo+ MM jarion + MV Hiianieniss + - ..

« Strings with infinite SO(6) angular momentum,
thus decompactified worldsheet X#(o € R, 7 = t)

and semiclassical corrections, O(1//1)

« Asymptotic Bethe equations give the spectrum as solution of
“B(A,/\) — 0»

connecting large and small A.



J = oo is easy because excitations can be widely separated:

« Dispersion relation  E(p) = /1+ Zsin* £ for isolated particle,
Energies are additive: Eqy = X E(pi)

« Two-particle S-matrix S(pi>pi)
Factorised scattering: Stiyiy = I1i; S(pis pj)

Bethe’s Ansatz for N-particle state is a superposition {p;}
constrained by (0, x2, x3...xx5) = ¥ (J, X2, X3 ... XN)
on a circle of J ~ oo size.

>

Similar equations for J < co: “Thermodynamic Bethe Ansatz” / “Y-system’

[Gromov, Kazakov, Vieira] [Arutyunov, Frolov, Suzuki] 2009



Giant magnons are classical string solutions dual to
spin chain magnons: [Hofman & Maldacena, 2006]

X'+ iX?=e"[cos £ +isinZ tanh(u)]

X? =sin £ sech(u)

where u = (x — t cos £)/sin Z. Charges

E(p) A= gn?
s 2

Turning on 2nd charge Q ~ /A in the X3-X* plane gives:

A
E(p,Q)=A-]= Q2+ = sin* 2
2 2
“Dyonic giant magnon” in R x S3 [Dorey] [Chen, Dorey, Okamura] 2006

dual to a bound state of Q spin chain magnons.



2 ABJM and AdS, x CP?

ABJM [2008] is 3+1-dim. /' = 6 superconformal Chern-Simons theory.

Dual to M2-branes in AdS, x 8’ /Z; , (also [BL & G, 2007-8-9] etc.)

KK reduction as k — oo leads to IIA strings on CP3.

Planar limit has 't Hooft coupling

N_ R
k= 32n%a”
New example of integrable AdS/CFT.

Almost everything can be copied across, with slight modifications.



Scalar fields are in (N, N) of U(N) (rather than adjoint),
and the spin chain vacuum is

0="Tr(vv])

Can excite even or odd chain,
decoupled at leading order:

A - % = > (Hij2 + Hisriss) + four loops

Symmetries fix the exact dispersion relation:
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but leave the function (1) unknown.

(True in AdSs x S° too, but there h(1) = A thanks to experiments
and an argument from S-duality [Berenstein & Trancanelli, 2009])
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Atd « 1, leading termis2loops. [Minahan & Zarembo, 2008]
Next term comes from 4 loops: Vg — lJE’ - (‘;24 M
h(A)*=A* -4 {(2) A +... iy
4
Visiy = — M?
[Leoni, Mauri, Minahan, Ohlsson Sax, Santambrogio, Sieg, e X k4
Tartaglino-Mazzucchelli 2010] (and earlier papers by bold names)
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3 String Solitons at One Loop

First example: folded spinning strings in AdS; subspace.

Classical solution ¢ = 7, p = 0,
with charges A — § = v/211log S when § — oo.

One-loop “disagreement”

log2
0A = —3% log S from sI(2) Bethe equations
= —5102iz log S explicit string calculation
s

[Gromov & Vieira] vS. [McLoughlin & Roiban] +
[Alday, Arutyunov, Bykov] + [Krishnan], 2008



Two resolutions:

« Modify the summation prescription,
keeping ¢ = 0 like S° case.  [Gromov & Mikhaylov, 2008]

log2
« Turn on ¢ = —2£, and

keep naive mode sum. [McLoughlin, Roiban, Tseytlin, 2008]

Summary:
A - log2 1
log; =2h(A) - 3% + O(E) from sI(2) Bethe equations
log2
o old sum Cold = —loiz
=V21+ using the with 2
Llog2 new sum Coow = 0



String calculations are
h
OE = Z Ewn

Prototype is sine-gordon: compare one-soliton to no-solitons.
This tends to be very infinite ... but (-1)F will save us.

Modes are of course perturbations like this

U —iwyt U
Xclassical te ! 5X"

becoming plane waves ek*~i¢t+i9/2 35 x — +o00,

In AdS; x S, all of these modes have the same mass: w? = k + 1.

w?=k*+1  heavy
w?=k>+1/2 light
(3 subspaces radius R and R/2)

But in AdS, x CP3, instead {



The two choices of cutoff are:

N
. light heavy
6Eold = 1\171—{n Z (wn + Wy )

* p=—N

/] |

—log2
2n

2N
li ht h
OF s = lim ( > o 3 w,;avy

n=—2N

= c=0
Heavy modes...
o are simply 4 of the 8 1 directions in space! (and fermions)

o do not appear in the Bethe ansatz
(they are superpositions, or “stacks”)

= c=

o are perhaps composite at one loop? [Zarembo, 2009]



4 Corrections for Giant Magnons

Compare one-loop corrections
to exact dispersion relation:
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An early result [Shenderovich, 2008] gave ¢ = 0,
confusingly before [G&V]’s new sum.




Giant magnon in CP! is identical to S? case.  [Gaiotto, Giombi, Yifl, 2008]

But the dyonic version is new, [MCA, Aniceto, Ohlssgﬁ Sax, 2009]
explores CP? by turning on & # 71/2, ¢; = wt + .. . |

|

sin & cos(9,/2) eiv2/2
cos & ei91/2

0

sin & sin(9,/2) e~i#2/2

Other giant magnons in RP? (and dyonic RP?) are superpositions
of two elementary magnons. [Hollowod & Miramontes, 2009]

In principle we could compute §X#(x, t) from worldsheet solutions
by hand (like S$° case [Papathanasiou & Spradlin, 2007])
but it is less work to use power tools...



Use some integrable systems technology called the algebraic curve:

Classical string solutions ~ <—  Riemann surfaces
one-to-one

Construction from Lax connection is like this:

M(x) = Pexpﬁlg doJ,(x)
eigM = {eipl(x)’ eiP2(x) oips(x) }

e ex=+4] } AdS 91 = —0io
[ 02 = —0o
| 03 = —0s
D — P qu=—a
— 05 = —0s




Well-developed scheme for semiclassical perturbations:
« Add /7 cut connecting sheets (i, /)
« at point y solving q;(y) — q;(y) = 2nn
i i i =& - g =
» with filling fraction S;; = & 55% dx(1- %) qi(x) =1

[Beisert, Kazakov, Sakai, Zarembo, 2005]
After constructing mode dg;(x), [Gromov, Vieira, 2007]
you can read off its perturbation of the energy:

SA=Q(y)=w
N ———
The you add all of these up... T e
Light polarisations (i, j) connect to sheet 5(=6) I —
Heavy ones do not. & —




For giant magnons, this gives simple “off-shell” frequencies:

() = ! (1 yX++X—)X{1 (i, j) light

yr-1 1 XX 2 heavy

Not easy to find positions x)/, hence “on-shell” frequencies wil = Q(xflj .

Can still add them up, with some complex analysis: [Schifer-Nameki 2006]
5E = 5 Z Qij(xn )
1 ;
- 95 dn' S (~1) cot(mn)Qyy(x)
4i Jr i

n plane:

R(N)

A

1)
U

n=N

v nlanea*



X plane:

X* U(e)

B Y I

Using gq;(x,)) - q](xn ) = 27n, write in x:

SE yg de( 1y () qJ() (Qi(x)—%'(x))ﬂij(x)

2

For now (J = o0) can ignore other contour components.

But we can’t ignore details of the cutoff
|n| < N, whichis [x| >1+¢ ...



heavy light

New sum is simplest: x,; ' ~ xy , thus cut off at same x = 1+ ¢ for both:
OF ew = hm Z x _1311 AN q’ cot(351)Q;(x)
U(e)
=0

heavy ~ 2x llght

Old sum is more work, x SO

80Eyq = lim Z dx + Z vsé;(z)dx (_lil']q’ij ot(q' 10 ij(x

>0 ijlight Ule) ij heavy

= _logZZSinE
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Dyonic case: §Eq 4 =

[MCA, Aniceto, Bombardelli, 2010]

All consistent with previous AdS results...



(Review [Klose, 2010] latest [APGHO,2011] )
Arguments about cutoff prescriptions:

Old: N
> (light + heavy)
-1
. 0g2
2

Easiest in worldsheet calculations. !

Equivalent to hard energy cutoff:
wy o< N o< A same for both types.i

(Freq. w.r.t. AdS time.)

In the spectral plane,

f heavy + f light
2e €

New:
2N N
> heavy + > light
c=0

Because heavy mode is composite?

heavy
N RN + Wy.

Easier to match all=A guess?

f (light + heavy)

i ... hence easiest in algebraic curve
i calculations.



5 Giant magnons at J < co [in progress]

y

Corrections are organised like this:

E= Y ann (e‘A/m)m (e28/E)"

m,n=0,1,2...

o ag = Eqass. + OF is the case ] = oo from before.

o Corrections ag,; are F-terms, zero classically.

o Corrections a, are y-terms, classical + one-loop,
so we can make a comparison:

1
ao,1€_2A/E = h()) aaus. (> Q) e 20/Eo(hpQ) 4 asubl_e_ZA/EO + O(E)

= \/g aclass.(p) Q) e_ZA/EO(\/m’p’Q) +OE" + O(

1
4



Gauge side: Liisher terms, which
are wrapped Feynman diagrams:

F-term: C/ |

) p-term:

F-terms: computed by [Bombardelli & Fioravanti, 2008], classically zero.

p-terms: Unsolved (order-of-limits?) issues for single elementary magnon
[Lukowski & Ohlsson Sax, 2008] [Bombardelli & Fioravanti, 2008]

For a bound state (dyonic magnon):

o classical y-term OK, (8° cas

« one-loop term not certain...

e: [Hatsuda & Suzuki, 2008])



Classical string solutions:

o Map to kink train in sine-gordon [Okamura & Suzuki, 2006]
or construct X# (o, 7) directly.

« Algebraic curve: this is the more natural case!

Giant magnon is a two-cut solution:

RS N

X plane re-organise

cuts to:

y-X" /Iength 5~ e A
Semiclassical calculation is an expansion in §? of previous integral fU(e) dx...

plus some discrete terms.  (S° case: [Gromov, Schifer-Nameki, Vieira, 2008])



Old vs. New:

o Earlier, I claimed “old” = “physical”: all modes to same energy.

Here, “old” leads to divergences, but “physical” like this works:

. y 1
8 Ephys :Aglzj(_l)a] Z Jan AILHSO‘ZZ( 1)F j§ ds

U(elfj,e;rj)

Needs cutoffs for every polarisation: Q;;(-1-¢;;) = Q;;(1+€];) = A

X plane:

xI=11.

—
[

X =-1 _ e~




Cut structure is different:

« In S° case, cuts always connect sheets p;(x) and p5(x) = —p5(x),
allowing ansatzae of the form

, 1 af(1)
x)= K+ +
P') \/(x—X+)(x—Y+)(x—X‘)(x—Y‘)( x-1

o But for CP? they connect g4(x) and g¢(x)...

00 ——— 4
The RP? magnon is like $° in this regard, _E——=mmw~

and for this we can compute both
“new” ¢ = 0 and “physical” ¢ = —2&2,

Both match match Liischer corrections
from [Bombardelli & Fioravanti, 2008].




6 The Near- Flat-Space Limit [in progress]

Intermediate limit: [Maldacena & Swanson, 2006]
« BMN: p,~1/V/A
o Near-flat-space: p,,; ~ 1/A/4
e Magnons: p,, ~1

Write the dispersion relation as follows:

L h(1)?sin? 222
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pr=E -p? = i +  [om?]

Thus mass corrections to the propagator will teach us about c:
i i i
+ A +..

pP-iTp-t T pi-om

Gay(p) =

el

1
p2_

Near-BMN Lagrangian computed by [Sundin, 2009], from coset model.

Taking a large boost of this p_ ~ A4 > oo, p, ~ A7/ > 0
and shifting fields to get canonical £,
leads us to the following theory:
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Diagrams for correction to light boson (w,w#) = 84 e:

wa (k) v (k)
O O
wa(P) woc(P)
¥(q) sa(q)
wp (k) y(k) or z; (k) v (k)
e Q- Q. -0
W) el e

Bubble diagrams always contain both heavy and light,
so there is no way for the cutoff to discriminate?

It is easiest to use dimensional regularisation...



For the tadpoles things are perfect:

wg (k) y(k) or zi(k) ' (k)
e 9700 0
T I TR, e L Tlog2
\/ﬁ 27-[
But for the bubbles...
wa (k) v (k)
NG S—G -
wa(p) wa(p) 1
y(a) si(a) -~ om?=-
2216w

Also check other modes (z:z;), (Vay?), ...
and the S-matrix... [Klose & Zarembo, 2007]
S> case: [Klose, Minahan, Zarembo, McLoughlin, 2007]



7 Two-Loops?

We've discussed essentially two kinds of one-loop calculation.
Both kinds done in AdSs x S$° to two loop accuracy:

« Soliton energy corrections:
Three papers and three years? [Roiban & Tseytlin, 2007]

[Giombi, Ricci, Roiban, Tseytlin, Vergu, 2010]
o Near-flat-space:

One sunset diagram, half a page!
[Klose, Minahan, Zarembo, McLoughlin, 2007]

There is also an all-loop argument that k(1) = A, using S-duality,
which fails for AdS, x CP3. [Berenstein & Trancanelli, 2009]

One further complication: relation N/k = A = R*/32n2a" gets modified,
starting at two IOOpS A> 1. [Bergman Hirano, 2009]



The End.

With thanks to Olof, Nikolay, Shiraz, Valentina,

and collaborators Diego, Ines, Per.



